Computer Science > Information Retrieval
[Submitted on 8 May 2021 (v1), last revised 25 Nov 2021 (this version, v2)]
Title:Long Short-Term Temporal Meta-learning in Online Recommendation
View PDFAbstract:An effective online recommendation system should jointly capture users' long-term and short-term preferences in both users' internal behaviors (from the target recommendation task) and external behaviors (from other tasks). However, it is extremely challenging to conduct fast adaptations to real-time new trends while making full use of all historical behaviors in large-scale systems, due to the real-world limitations in real-time training efficiency and external behavior acquisition. To address these practical challenges, we propose a novel Long Short-Term Temporal Meta-learning framework (LSTTM) for online recommendation. It arranges user multi-source behaviors in a global long-term graph and an internal short-term graph, and conducts different GAT-based aggregators and training strategies to learn user short-term and long-term preferences separately. To timely capture users' real-time interests, we propose a temporal meta-learning method based on MAML under an asynchronous optimization strategy for fast adaptation, which regards recommendations at different time periods as different tasks. In experiments, LSTTM achieves significant improvements on both offline and online evaluations. It has been deployed on a widely-used online recommendation system named WeChat Top Stories, affecting millions of users.
Submission history
From: Ruobing Xie [view email][v1] Sat, 8 May 2021 12:27:37 UTC (119 KB)
[v2] Thu, 25 Nov 2021 12:00:23 UTC (1,106 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.