Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 May 2021 (v1), last revised 14 Dec 2021 (this version, v2)]
Title:CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes
View PDFAbstract:Malicious applications of deepfakes (i.e., technologies generating target facial attributes or entire faces from facial images) have posed a huge threat to individuals' reputation and security. To mitigate these threats, recent studies have proposed adversarial watermarks to combat deepfake models, leading them to generate distorted outputs. Despite achieving impressive results, these adversarial watermarks have low image-level and model-level transferability, meaning that they can protect only one facial image from one specific deepfake model. To address these issues, we propose a novel solution that can generate a Cross-Model Universal Adversarial Watermark (CMUA-Watermark), protecting a large number of facial images from multiple deepfake models. Specifically, we begin by proposing a cross-model universal attack pipeline that attacks multiple deepfake models iteratively. Then, we design a two-level perturbation fusion strategy to alleviate the conflict between the adversarial watermarks generated by different facial images and models. Moreover, we address the key problem in cross-model optimization with a heuristic approach to automatically find the suitable attack step sizes for different models, further weakening the model-level conflict. Finally, we introduce a more reasonable and comprehensive evaluation method to fully test the proposed method and compare it with existing ones. Extensive experimental results demonstrate that the proposed CMUA-Watermark can effectively distort the fake facial images generated by multiple deepfake models while achieving a better performance than existing methods.
Submission history
From: Hao Huang [view email][v1] Sun, 23 May 2021 07:28:36 UTC (7,350 KB)
[v2] Tue, 14 Dec 2021 02:56:14 UTC (12,584 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.