Computer Science > Machine Learning
[Submitted on 31 May 2021 (v1), last revised 4 Aug 2022 (this version, v2)]
Title:NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
View PDFAbstract:Adversarial training (AT) formulated as the minimax optimization problem can effectively enhance the model's robustness against adversarial attacks. The existing AT methods mainly focused on manipulating the inner maximization for generating quality adversarial variants or manipulating the outer minimization for designing effective learning objectives. However, empirical results of AT always exhibit the robustness at odds with accuracy and the existence of the cross-over mixture problem, which motivates us to study some label randomness for benefiting the AT. First, we thoroughly investigate noisy labels (NLs) injection into AT's inner maximization and outer minimization, respectively and obtain the observations on when NL injection benefits AT. Second, based on the observations, we propose a simple but effective method -- NoiLIn that randomly injects NLs into training data at each training epoch and dynamically increases the NL injection rate once robust overfitting occurs. Empirically, NoiLIn can significantly mitigate the AT's undesirable issue of robust overfitting and even further improve the generalization of the state-of-the-art AT methods. Philosophically, NoiLIn sheds light on a new perspective of learning with NLs: NLs should not always be deemed detrimental, and even in the absence of NLs in the training set, we may consider injecting them deliberately. Codes are available in this https URL.
Submission history
From: Jingfeng Zhang [view email][v1] Mon, 31 May 2021 02:17:51 UTC (4,620 KB)
[v2] Thu, 4 Aug 2022 08:43:31 UTC (7,935 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.