Computer Science > Computation and Language
[Submitted on 1 Jun 2021 (v1), last revised 31 Jul 2021 (this version, v2)]
Title:Dialogue-oriented Pre-training
View PDFAbstract:Pre-trained language models (PrLM) has been shown powerful in enhancing a broad range of downstream tasks including various dialogue related ones. However, PrLMs are usually trained on general plain text with common language model (LM) training objectives, which cannot sufficiently capture dialogue exclusive features due to the limitation of such training setting, so that there is an immediate need to fill the gap between a specific dialogue task and the LM task. As it is unlikely to collect huge dialogue data for dialogue-oriented pre-training, in this paper, we propose three strategies to simulate the conversation features on general plain text. Our proposed method differs from existing post-training methods that it may yield a general-purpose PrLM and does not individualize to any detailed task while keeping the capability of learning dialogue related features including speaker awareness, continuity and consistency. The resulted Dialog-PrLM is fine-tuned on three public multi-turn dialogue datasets and helps achieve significant and consistent improvement over the plain PrLMs.
Submission history
From: Yi Xu [view email][v1] Tue, 1 Jun 2021 12:02:46 UTC (206 KB)
[v2] Sat, 31 Jul 2021 12:43:21 UTC (92 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.