Computer Science > Computation and Language
[Submitted on 2 Jun 2021]
Title:Few-Shot Partial-Label Learning
View PDFAbstract:Partial-label learning (PLL) generally focuses on inducing a noise-tolerant multi-class classifier by training on overly-annotated samples, each of which is annotated with a set of labels, but only one is the valid label. A basic promise of existing PLL solutions is that there are sufficient partial-label (PL) samples for training. However, it is more common than not to have just few PL samples at hand when dealing with new tasks. Furthermore, existing few-shot learning algorithms assume precise labels of the support set; as such, irrelevant labels may seriously mislead the meta-learner and thus lead to a compromised performance. How to enable PLL under a few-shot learning setting is an important problem, but not yet well studied. In this paper, we introduce an approach called FsPLL (Few-shot PLL). FsPLL first performs adaptive distance metric learning by an embedding network and rectifying prototypes on the tasks previously encountered. Next, it calculates the prototype of each class of a new task in the embedding network. An unseen example can then be classified via its distance to each prototype. Experimental results on widely-used few-shot datasets (Omniglot and miniImageNet) demonstrate that our FsPLL can achieve a superior performance than the state-of-the-art methods across different settings, and it needs fewer samples for quickly adapting to new tasks.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.