Computer Science > Data Structures and Algorithms
[Submitted on 3 Jun 2021 (v1), last revised 14 Aug 2021 (this version, v2)]
Title:Position Heaps for Cartesian-tree Matching on Strings and Tries
View PDFAbstract:The Cartesian-tree pattern matching is a recently introduced scheme of pattern matching that detects fragments in a sequential data stream which have a similar structure as a query pattern. Formally, Cartesian-tree pattern matching seeks all substrings $S'$ of the text string $S$ such that the Cartesian tree of $S'$ and that of a query pattern $P$ coincide. In this paper, we present a new indexing structure for this problem called the Cartesian-tree Position Heap (CPH). Let $n$ be the length of the input text string $S$, $m$ the length of a query pattern $P$, and $\sigma$ the alphabet size. We show that the CPH of $S$, denoted $\mathsf{CPH}(S)$, supports pattern matching queries in $O(m (\sigma + \log (\min\{h, m\})) + occ)$ time with $O(n)$ space, where $h$ is the height of the CPH and $occ$ is the number of pattern occurrences. We show how to build $\mathsf{CPH}(S)$ in $O(n \log \sigma)$ time with $O(n)$ working space. Further, we extend the problem to the case where the text is a labeled tree (i.e. a trie). Given a trie $T$ with $N$ nodes, we show that the CPH of $T$, denoted $\mathsf{CPH}(T)$, supports pattern matching queries on the trie in $O(m (\sigma^2 + \log (\min\{h, m\})) + occ)$ time with $O(N \sigma)$ space. We also show a construction algorithm for $\mathsf{CPH}(T)$ running in $O(N \sigma)$ time and $O(N \sigma)$ working space.
Submission history
From: Shunsuke Inenaga [view email][v1] Thu, 3 Jun 2021 04:53:23 UTC (1,310 KB)
[v2] Sat, 14 Aug 2021 09:10:08 UTC (1,310 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.