Computer Science > Multimedia
[Submitted on 10 Jun 2021 (v1), last revised 21 Jun 2022 (this version, v2)]
Title:Tree-Structured Data Clustering-Driven Neural Network for Intra Prediction in Video Coding
View PDFAbstract:As a crucial part of video compression, intra prediction utilizes local information of images to eliminate the redundancy in spatial domain. In both the High Efficiency Video Coding (H.265/HEVC) and Versatile Video Coding (H.266/VVC), multiple directional prediction modes are employed to find the texture trend of each small block and then the prediction is made based on reference samples in the selected direction. Recently, the intra prediction schemes based on neural networks have achieved great success. In these methods, the networks are trained and applied to intra prediction to assist the directional prediction modes. In this paper, we propose a novel tree-structured data clustering-driven neural network (dubbed TreeNet) for intra prediction, which builds the networks and clusters the training data in a tree-structured manner. Specifically, in each network split and training process of TreeNet, every parent network on a leaf node is split into two child networks by adding or subtracting Gaussian random noise. Then a data clustering-driven training is applied to train the two derived child networks using the clustered training data of their parent. To test the performance, TreeNet is integrated into VVC and HEVC to combine with or replace the directional prediction modes. In addition, a fast termination strategy is proposed to accelerate the search of TreeNet. The experimental results demonstrate that TreeNet with the fast termination can reach an average of 2.8% Bjontegaard distortion rate (BD-rate) improvement (up to 8.1%) and 4.9% BD-rate improvement (up to 8.2%) over VVC (VTM-4.0) and HEVC (HM-16.9) with all intra configuration, respectively.
Submission history
From: Hengyu Man [view email][v1] Thu, 10 Jun 2021 03:48:56 UTC (1,690 KB)
[v2] Tue, 21 Jun 2022 07:56:21 UTC (21,673 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.