Computer Science > Machine Learning
[Submitted on 11 Jun 2021 (v1), last revised 30 May 2022 (this version, v2)]
Title:CausalAdv: Adversarial Robustness through the Lens of Causality
View PDFAbstract:The adversarial vulnerability of deep neural networks has attracted significant attention in machine learning. As causal reasoning has an instinct for modelling distribution change, it is essential to incorporate causality into analyzing this specific type of distribution change induced by adversarial attacks. However, causal formulations of the intuition of adversarial attacks and the development of robust DNNs are still lacking in the literature. To bridge this gap, we construct a causal graph to model the generation process of adversarial examples and define the adversarial distribution to formalize the intuition of adversarial attacks. From the causal perspective, we study the distinction between the natural and adversarial distribution and conclude that the origin of adversarial vulnerability is the focus of models on spurious correlations. Inspired by the causal understanding, we propose the Causal inspired Adversarial distribution alignment method, CausalAdv, to eliminate the difference between natural and adversarial distributions by considering spurious correlations. Extensive experiments demonstrate the efficacy of the proposed method. Our work is the first attempt towards using causality to understand and mitigate the adversarial vulnerability.
Submission history
From: Yonggang Zhang [view email][v1] Fri, 11 Jun 2021 06:55:02 UTC (290 KB)
[v2] Mon, 30 May 2022 05:46:55 UTC (544 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.