Quantum Physics
[Submitted on 22 Jun 2021 (v1), last revised 9 May 2024 (this version, v5)]
Title:Quantum Computing -- A new scientific revolution in the making
View PDF HTML (experimental)Abstract:Given the impending timeline of developing good-quality quantum processing units, it is time to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quantum computing, or rather Quantum Computing Logic (QC-Logic), on various scientific fields. This is where the subtitle comes from. A new scientific revolution is unfolding. In making real scientific progress, we need to use an additional and complementary approach, which the NISQ program or any follow-up approach does not propose. We must be aware that defining, implementing, and testing quantum concepts in any field is tremendous work. The main reason is that QC initiates an overall revolution in all scientific fields, and how those machines will be used in daily life is a very big challenge. That is why we propose a complete update of the first PISQ paper. We still advocate the additional PISQ approach: Perfect Intermediate-Scale Quantum computing based on a well-established concept of perfect qubits. We expand the quantum road map with (N)FTQC, which stands for (Non) Fault-Tolerant Quantum Computing. This will allow researchers to focus exclusively on developing new applications by defining the algorithms in terms of perfect qubits and evaluating them in two ways. Either executed on quantum computing simulators executed on supercomputers or hardware-based qubit chips. This approach will be explained in this paper. Our planet needs a long-term vision and solution. It will enable universities and companies alike to accelerate the development of new quantum algorithms, build the necessary know-how, and thus address one of the key bottlenecks within the quantum industry: the lack of talent to develop well-tested quantum applications.
Submission history
From: Aritra Sarkar [view email][v1] Tue, 22 Jun 2021 14:56:55 UTC (3,435 KB)
[v2] Fri, 17 Dec 2021 08:56:59 UTC (4,629 KB)
[v3] Fri, 15 Apr 2022 11:23:06 UTC (4,634 KB)
[v4] Fri, 8 Jul 2022 08:15:12 UTC (5,227 KB)
[v5] Thu, 9 May 2024 11:57:01 UTC (2,502 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.