Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Jun 2021 (v1), last revised 22 Oct 2021 (this version, v3)]
Title:Multi-Exit Vision Transformer for Dynamic Inference
View PDFAbstract:Deep neural networks can be converted to multi-exit architectures by inserting early exit branches after some of their intermediate layers. This allows their inference process to become dynamic, which is useful for time critical IoT applications with stringent latency requirements, but with time-variant communication and computation resources. In particular, in edge computing systems and IoT networks where the exact computation time budget is variable and not known beforehand. Vision Transformer is a recently proposed architecture which has since found many applications across various domains of computer vision. In this work, we propose seven different architectures for early exit branches that can be used for dynamic inference in Vision Transformer backbones. Through extensive experiments involving both classification and regression problems, we show that each one of our proposed architectures could prove useful in the trade-off between accuracy and speed.
Submission history
From: Arian Bakhtiarnia [view email][v1] Tue, 29 Jun 2021 09:01:13 UTC (1,812 KB)
[v2] Wed, 30 Jun 2021 07:45:39 UTC (1,812 KB)
[v3] Fri, 22 Oct 2021 12:54:28 UTC (2,016 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.