Computer Science > Computation and Language
[Submitted on 9 Jul 2021]
Title:Benchmarking for Biomedical Natural Language Processing Tasks with a Domain Specific ALBERT
View PDFAbstract:The availability of biomedical text data and advances in natural language processing (NLP) have made new applications in biomedical NLP possible. Language models trained or fine tuned using domain specific corpora can outperform general models, but work to date in biomedical NLP has been limited in terms of corpora and tasks. We present BioALBERT, a domain-specific adaptation of A Lite Bidirectional Encoder Representations from Transformers (ALBERT), trained on biomedical (PubMed and PubMed Central) and clinical (MIMIC-III) corpora and fine tuned for 6 different tasks across 20 benchmark datasets. Experiments show that BioALBERT outperforms the state of the art on named entity recognition (+11.09% BLURB score improvement), relation extraction (+0.80% BLURB score), sentence similarity (+1.05% BLURB score), document classification (+0.62% F1-score), and question answering (+2.83% BLURB score). It represents a new state of the art in 17 out of 20 benchmark datasets. By making BioALBERT models and data available, our aim is to help the biomedical NLP community avoid computational costs of training and establish a new set of baselines for future efforts across a broad range of biomedical NLP tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.