Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Jul 2021 (v1), last revised 12 Jul 2022 (this version, v2)]
Title:Weakly-supervised Part-Attention and Mentored Networks for Vehicle Re-Identification
View PDFAbstract:Vehicle re-identification (Re-ID) aims to retrieve images with the same vehicle ID across different cameras. Current part-level feature learning methods typically detect vehicle parts via uniform division, outside tools, or attention modeling. However, such part features often require expensive additional annotations and cause sub-optimal performance in case of unreliable part mask predictions. In this paper, we propose a weakly-supervised Part-Attention Network (PANet) and Part-Mentored Network (PMNet) for Vehicle Re-ID. Firstly, PANet localizes vehicle parts via part-relevant channel recalibration and cluster-based mask generation without vehicle part supervisory information. Secondly, PMNet leverages teacher-student guided learning to distill vehicle part-specific features from PANet and performs multi-scale global-part feature extraction. During inference, PMNet can adaptively extract discriminative part features without part localization by PANet, preventing unstable part mask predictions. We address this Re-ID issue as a multi-task problem and adopt Homoscedastic Uncertainty to learn the optimal weighing of ID losses. Experiments are conducted on two public benchmarks, showing that our approach outperforms recent methods, which require no extra annotations by an average increase of 3.0% in CMC@5 on VehicleID and over 1.4% in mAP on VeRi776. Moreover, our method can extend to the occluded vehicle Re-ID task and exhibits good generalization ability.
Submission history
From: Lisha Tang [view email][v1] Sat, 17 Jul 2021 12:19:12 UTC (4,059 KB)
[v2] Tue, 12 Jul 2022 03:56:47 UTC (12,723 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.