Computer Science > Mathematical Software
[Submitted on 19 Jul 2021]
Title:NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations
View PDFAbstract:Physics-informed neural networks (PINNs) are an increasingly powerful way to solve partial differential equations, generate digital twins, and create neural surrogates of physical models. In this manuscript we detail the inner workings of this http URL and show how a formulation structured around numerical quadrature gives rise to new loss functions which allow for adaptivity towards bounded error tolerances. We describe the various ways one can use the tool, detailing mathematical techniques like using extended loss functions for parameter estimation and operator discovery, to help potential users adopt these PINN-based techniques into their workflow. We showcase how NeuralPDE uses a purely symbolic formulation so that all of the underlying training code is generated from an abstract formulation, and show how to make use of GPUs and solve systems of PDEs. Afterwards we give a detailed performance analysis which showcases the trade-off between training techniques on a large set of PDEs. We end by focusing on a complex multiphysics example, the Doyle-Fuller-Newman (DFN) Model, and showcase how this PDE can be formulated and solved with NeuralPDE. Together this manuscript is meant to be a detailed and approachable technical report to help potential users of the technique quickly get a sense of the real-world performance trade-offs and use cases of the PINN techniques.
Submission history
From: Christopher Rackauckas [view email][v1] Mon, 19 Jul 2021 12:38:31 UTC (13,837 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.