Mathematics > Numerical Analysis
[Submitted on 25 Aug 2021 (v1), last revised 12 Dec 2022 (this version, v2)]
Title:Multivariate Generalized Hermite Subdivision Schemes
View PDFAbstract:Due to properties such as interpolation, smoothness, and spline connections, Hermite subdivision schemes employ fast iterative algorithms for geometrically modeling curves/surfaces in CAGD and for building Hermite wavelets in numerical PDEs. In this paper we introduce a notion of generalized Hermite (dyadic) subdivision schemes and then we characterize their convergence, smoothness and underlying matrix masks with or without interpolation properties. We also introduce the notion of linear-phase moments for achieving the polynomial-interpolation property. For any given positive integer m, we constructively prove that there always exist convergent smooth generalized Hermite subdivision schemes with linear-phase moments such that their basis vector functions are spline functions in $C^m$ and have linearly independent integer shifts. As byproducts, our results resolve convergence, smoothness and existence of Lagrange, Hermite, or Birkhoff subdivision schemes. Even in dimension one our results significantly generalize and extend many known results on extensively studied univariate Hermite subdivision schemes. To illustrate the theoretical results in this paper, we provide examples of convergent generalized Hermite subdivision schemes with symmetric matrix masks having short support and smooth basis vector functions with or without interpolation property.
Submission history
From: Bin Han [view email][v1] Wed, 25 Aug 2021 14:50:44 UTC (43 KB)
[v2] Mon, 12 Dec 2022 22:52:31 UTC (50 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.