Mathematics > Optimization and Control
[Submitted on 22 Sep 2021 (v1), last revised 16 Jun 2022 (this version, v2)]
Title:Recursive Feasibility Guided Optimal Parameter Adaptation of Differential Convex Optimization Policies for Safety-Critical Systems
View PDFAbstract:Quadratic Program(QP) based state-feedback controllers, whose inequality constraints bound the rate of change of control barrier(CBFs) and lyapunov function with a class-$\mathcal{K}$ function of their values, are sensitive to the parameters of these class-$\mathcal{K}$ functions. The construction of valid CBFs, however, is not straightforward, and for arbitrarily chosen parameters of the QP, the system trajectories may enter states at which the QP either eventually becomes infeasible, or may not achieve desired performance. In this work, we pose the control synthesis problem as a differential policy whose parameters are optimized for performance over a time horizon at high level, thus resulting in a bi-level optimization routine. In the absence of knowledge of the set of feasible parameters, we develop a Recursive Feasibility Guided Gradient Descent approach for updating the parameters of QP so that the new solution performs at least as well as previous solution. By considering the dynamical system as a directed graph over time, this work presents a novel way of optimizing performance of a QP controller over a time horizon for multiple CBFs by (1) using the gradient of its solution with respect to its parameters by employing sensitivity analysis, and (2) backpropagating these as well as system dynamics gradients to update parameters while maintaining feasibility of QPs.
Submission history
From: Hardik Parwana [view email][v1] Wed, 22 Sep 2021 18:13:37 UTC (591 KB)
[v2] Thu, 16 Jun 2022 14:30:56 UTC (2,684 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.