Computer Science > Robotics
[Submitted on 28 Sep 2021]
Title:Not Only Domain Randomization: Universal Policy with Embedding System Identification
View PDFAbstract:Domain randomization (DR) cannot provide optimal policies for adapting the learning agent to the dynamics of the environment, although it can generalize sub-optimal policies to work in a transferred domain. In this paper, we present Universal Policy with Embedding System Identification (UPESI) as an implicit system identification (SI) approach with universal policies (UPs), as a learning-based control method to execute optimal actions adaptively in environments with various dynamic properties. Previous approaches of SI for adaptive policies either conduct explicit SI, which is testified to be an ill-posed problem, or suffer from low efficiency without leveraging the simulation oracle. We propose to conduct SI in the embedding space of system dynamics by leveraging a learned forward dynamics model, and use Bayesian optimization for the SI process given transition data in a new environment. The identified embeddings are applied as additional input to the UP to enable its dynamics adaptability. Experiments demonstrate the advantageous performances of our proposed UP with embedding SI over standard DR and conventional SI approaches on both low-dimensional and high-dimensional simulation tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.