Electrical Engineering and Systems Science > Systems and Control
[Submitted on 1 Oct 2021 (v1), last revised 20 Jul 2022 (this version, v3)]
Title:Error-free approximation of explicit linear MPC through lattice piecewise affine expression
View PDFAbstract:In this paper, the disjunctive and conjunctive lattice piecewise affine (PWA) approximations of explicit linear model predictive control (MPC) are proposed. The training data are generated uniformly in the domain of interest, consisting of the state samples and corresponding affine control laws, based on which the lattice PWA approximations are constructed. Re-sampling of data is also proposed to guarantee that the lattice PWA approximations are identical to explicit MPC control law in the unique order (UO) regions containing the sample points as interior points. Additionally, under mild assumptions, the equivalence of the two lattice PWA approximations guarantees that the approximations are error-free in the domain of interest. The algorithms for deriving statistically error-free approximation to the explicit linear MPC are proposed and the complexity of the entire procedure is analyzed, which is polynomial with respect to the number of samples. The performance of the proposed approximation strategy is tested through two simulation examples, and the result shows that with a moderate number of sample points, we can construct lattice PWA approximations that are equivalent to optimal control law of the explicit linear MPC.
Submission history
From: Jun Xu [view email][v1] Fri, 1 Oct 2021 04:07:48 UTC (673 KB)
[v2] Tue, 26 Oct 2021 08:37:37 UTC (631 KB)
[v3] Wed, 20 Jul 2022 09:01:50 UTC (1,854 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.