Computer Science > Artificial Intelligence
[Submitted on 5 Oct 2021 (v1), last revised 14 Jun 2022 (this version, v3)]
Title:ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning
View PDFAbstract:Contrastive Learning (CL) has emerged as a dominant technique for unsupervised representation learning which embeds augmented versions of the anchor close to each other (positive samples) and pushes the embeddings of other samples (negatives) apart. As revealed in recent studies, CL can benefit from hard negatives (negatives that are most similar to the anchor). However, we observe limited benefits when we adopt existing hard negative mining techniques of other domains in Graph Contrastive Learning (GCL). We perform both experimental and theoretical analysis on this phenomenon and find it can be attributed to the message passing of Graph Neural Networks (GNNs). Unlike CL in other domains, most hard negatives are potentially false negatives (negatives that share the same class with the anchor) if they are selected merely according to the similarities between anchor and themselves, which will undesirably push away the samples of the same class. To remedy this deficiency, we propose an effective method, dubbed \textbf{ProGCL}, to estimate the probability of a negative being true one, which constitutes a more suitable measure for negatives' hardness together with similarity. Additionally, we devise two schemes (i.e., \textbf{ProGCL-weight} and \textbf{ProGCL-mix}) to boost the performance of GCL. Extensive experiments demonstrate that ProGCL brings notable and consistent improvements over base GCL methods and yields multiple state-of-the-art results on several unsupervised benchmarks or even exceeds the performance of supervised ones. Also, ProGCL is readily pluggable into various negatives-based GCL methods for performance improvement. We release the code at \textcolor{magenta}{\url{this https URL}}.
Submission history
From: Jun Xia [view email][v1] Tue, 5 Oct 2021 13:15:59 UTC (3,482 KB)
[v2] Thu, 2 Jun 2022 03:36:30 UTC (3,105 KB)
[v3] Tue, 14 Jun 2022 02:24:02 UTC (2,202 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.