Computer Science > Information Theory
[Submitted on 12 Oct 2021]
Title:Remote Anomaly Detection in Industry 4.0 Using Resource-Constrained Devices
View PDFAbstract:A central use case for the Internet of Things (IoT) is the adoption of sensors to monitor physical processes, such as the environment and industrial manufacturing processes, where they provide data for predictive maintenance, anomaly detection, or similar. The sensor devices are typically resource-constrained in terms of computation and power, and need to rely on cloud or edge computing for data processing. However, the capacity of the wireless link and their power constraints limit the amount of data that can be transmitted to the cloud. While this is not problematic for the monitoring of slowly varying processes such as temperature, it is more problematic for complex signals such as those captured by vibration and acoustic sensors. In this paper, we consider the specific problem of remote anomaly detection based on signals that fall into the latter category over wireless channels with resource-constrained sensors. We study the impact of source coding on the detection accuracy with both an anomaly detector based on Principal Component Analysis (PCA) and one based on an autoencoder. We show that the coded transmission is beneficial when the signal-to-noise ratio (SNR) of the channel is low, while uncoded transmission performs best in the high SNR regime.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.