Computer Science > Machine Learning
[Submitted on 14 Oct 2021 (v1), last revised 17 Dec 2022 (this version, v3)]
Title:Omni-Training: Bridging Pre-Training and Meta-Training for Few-Shot Learning
View PDFAbstract:Few-shot learning aims to fast adapt a deep model from a few examples. While pre-training and meta-training can create deep models powerful for few-shot generalization, we find that pre-training and meta-training focuses respectively on cross-domain transferability and cross-task transferability, which restricts their data efficiency in the entangled settings of domain shift and task shift. We thus propose the Omni-Training framework to seamlessly bridge pre-training and meta-training for data-efficient few-shot learning. Our first contribution is a tri-flow Omni-Net architecture. Besides the joint representation flow, Omni-Net introduces two parallel flows for pre-training and meta-training, responsible for improving domain transferability and task transferability respectively. Omni-Net further coordinates the parallel flows by routing their representations via the joint-flow, enabling knowledge transfer across flows. Our second contribution is the Omni-Loss, which introduces a self-distillation strategy separately on the pre-training and meta-training objectives for boosting knowledge transfer throughout different training stages. Omni-Training is a general framework to accommodate many existing algorithms. Evaluations justify that our single framework consistently and clearly outperforms the individual state-of-the-art methods on both cross-task and cross-domain settings in a variety of classification, regression and reinforcement learning problems.
Submission history
From: Yang Shu [view email][v1] Thu, 14 Oct 2021 16:30:36 UTC (713 KB)
[v2] Fri, 8 Apr 2022 08:14:04 UTC (766 KB)
[v3] Sat, 17 Dec 2022 07:19:43 UTC (607 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.