Computer Science > Computation and Language
[Submitted on 15 Oct 2021 (v1), last revised 16 Mar 2022 (this version, v2)]
Title:Tracing Origins: Coreference-aware Machine Reading Comprehension
View PDFAbstract:Machine reading comprehension is a heavily-studied research and test field for evaluating new pre-trained language models (PrLMs) and fine-tuning strategies, and recent studies have enriched the pre-trained language models with syntactic, semantic and other linguistic information to improve the performance of the models. In this paper, we imitate the human reading process in connecting the anaphoric expressions and explicitly leverage the coreference information of the entities to enhance the word embeddings from the pre-trained language model, in order to highlight the coreference mentions of the entities that must be identified for coreference-intensive question answering in QUOREF, a relatively new dataset that is specifically designed to evaluate the coreference-related performance of a model. We use two strategies to fine-tune a pre-trained language model, namely, placing an additional encoder layer after a pre-trained language model to focus on the coreference mentions or constructing a relational graph convolutional network to model the coreference relations. We demonstrate that the explicit incorporation of coreference information in the fine-tuning stage performs better than the incorporation of the coreference information in pre-training a language model.
Submission history
From: Baorong Huang [view email][v1] Fri, 15 Oct 2021 09:28:35 UTC (7,698 KB)
[v2] Wed, 16 Mar 2022 13:23:59 UTC (1,700 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.