Computer Science > Machine Learning
[Submitted on 18 Oct 2021 (v1), last revised 10 Feb 2022 (this version, v2)]
Title:BEV-SGD: Best Effort Voting SGD for Analog Aggregation Based Federated Learning against Byzantine Attackers
View PDFAbstract:As a promising distributed learning technology, analog aggregation based federated learning over the air (FLOA) provides high communication efficiency and privacy provisioning under the edge computing paradigm. When all edge devices (workers) simultaneously upload their local updates to the parameter server (PS) through commonly shared time-frequency resources, the PS obtains the averaged update only rather than the individual local ones. While such a concurrent transmission and aggregation scheme reduces the latency and communication costs, it unfortunately renders FLOA vulnerable to Byzantine attacks. Aiming at Byzantine-resilient FLOA, this paper starts from analyzing the channel inversion (CI) mechanism that is widely used for power control in FLOA. Our theoretical analysis indicates that although CI can achieve good learning performance in the benign scenarios, it fails to work well with limited defensive capability against Byzantine attacks. Then, we propose a novel scheme called the best effort voting (BEV) power control policy that is integrated with stochastic gradient descent (SGD). Our BEV-SGD enhances the robustness of FLOA to Byzantine attacks, by allowing all the workers to send their local updates at their maximum transmit power. Under worst-case attacks, we derive the expected convergence rates of FLOA with CI and BEV power control policies, respectively. The rate comparison reveals that our BEV-SGD outperforms its counterpart with CI in terms of better convergence behavior, which is verified by experimental simulations.
Submission history
From: Xin Fan [view email][v1] Mon, 18 Oct 2021 23:55:13 UTC (646 KB)
[v2] Thu, 10 Feb 2022 04:31:32 UTC (426 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.