Computer Science > Machine Learning
[Submitted on 19 Oct 2021]
Title:FedHe: Heterogeneous Models and Communication-Efficient Federated Learning
View PDFAbstract:Federated learning (FL) is able to manage edge devices to cooperatively train a model while maintaining the training data local and private. One common assumption in FL is that all edge devices share the same machine learning model in training, for example, identical neural network architecture. However, the computation and store capability of different devices may not be the same. Moreover, reducing communication overheads can improve the training efficiency though it is still a challenging problem in FL. In this paper, we propose a novel FL method, called FedHe, inspired by knowledge distillation, which can train heterogeneous models and support asynchronous training processes with significantly reduced communication overheads. Our analysis and experimental results demonstrate that the performance of our proposed method is better than the state-of-the-art algorithms in terms of communication overheads and model accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.