Electrical Engineering and Systems Science > Systems and Control
[Submitted on 20 Oct 2021]
Title:Transferring Reinforcement Learning for DC-DC Buck Converter Control via Duty Ratio Mapping: From Simulation to Implementation
View PDFAbstract:Reinforcement learning (RL) control approach with application into power electronics systems has become an emerging topic whilst the sim-to-real issue remains a challenging problem as very few results can be referred to in the literature. Indeed, due to the inevitable mismatch between simulation models and real-life systems, offline trained RL control strategies may sustain unexpected hurdles in practical implementation during transferring procedure. As the main contribution of this paper, a transferring methodology via a delicately designed duty ratio mapping (DRM) is proposed for a DC-DC buck converter. Then, a detailed sim-to-real process is presented to enable the implementation of a model-free deep reinforcement learning (DRL) controller. The feasibility and effectiveness of the proposed methodology are demonstrated by comparative experimental studies.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.