Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Oct 2021 (v1), last revised 13 Aug 2022 (this version, v2)]
Title:A Deep Learning Framework for Diffeomorphic Mapping Problems via Quasi-conformal Geometry applied to Imaging
View PDFAbstract:Many imaging problems can be formulated as mapping problems. A general mapping problem aims to obtain an optimal mapping that minimizes an energy functional subject to the given constraints. Existing methods to solve the mapping problems are often inefficient and can sometimes get trapped in local minima. An extra challenge arises when the optimal mapping is required to be diffeomorphic. In this work, we address the problem by proposing a deep-learning framework based on the Quasiconformal (QC) Teichmuller theories. The main strategy is to learn the Beltrami coefficient (BC) that represents a mapping as the latent feature vector in the deep neural network. The BC measures the local geometric distortion under the mapping, with which the interpretability of the deep neural network can be enhanced. Under this framework, the diffeomorphic property of the mapping can be controlled via a simple activation function within the network. The optimal mapping can also be easily regularized by integrating the BC into the loss function. A crucial advantage of the proposed framework is that once the network is successfully trained, the optimized mapping corresponding to each input data information can be obtained in real time. To examine the efficacy of the proposed framework, we apply the method to the diffeomorphic image registration problem. Experimental results outperform other state-of-the-art registration algorithms in both efficiency and accuracy, which demonstrate the effectiveness of our proposed framework to solve the mapping problem.
Submission history
From: Qiguang Chen [view email][v1] Wed, 20 Oct 2021 14:23:24 UTC (34,545 KB)
[v2] Sat, 13 Aug 2022 08:27:12 UTC (6,875 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.