Computer Science > Information Retrieval
[Submitted on 22 Oct 2021 (v1), last revised 14 Feb 2022 (this version, v2)]
Title:MIC: Model-agnostic Integrated Cross-channel Recommenders
View PDFAbstract:Semantically connecting users and items is a fundamental problem for the matching stage of an industrial recommender system. Recent advances in this topic are based on multi-channel retrieval to efficiently measure users' interest on items from the massive candidate pool. However, existing work are primarily built upon pre-defined retrieval channels, including User-CF (U2U), Item-CF (I2I), and Embedding-based Retrieval (U2I), thus access to the limited correlation between users and items which solely entail from partial information of latent interactions. In this paper, we propose a model-agnostic integrated cross-channel (MIC) approach for the large-scale recommendation, which maximally leverages the inherent multi-channel mutual information to enhance the matching performance. Specifically, MIC robustly models correlation within user-item, user-user, and item-item from latent interactions in a universal schema. For each channel, MIC naturally aligns pairs with semantic similarity and distinguishes them otherwise with more uniform anisotropic representation space. While state-of-the-art methods require specific architectural design, MIC intuitively considers them as a whole by enabling the complete information flow among users and items. Thus MIC can be easily plugged into other retrieval recommender systems. Extensive experiments show that our MIC helps several state-of-the-art models boost their performance on two real-world benchmarks. The satisfactory deployment of the proposed MIC on industrial online services empirically proves its scalability and flexibility.
Submission history
From: Yujie Lu [view email][v1] Fri, 22 Oct 2021 03:28:21 UTC (555 KB)
[v2] Mon, 14 Feb 2022 00:35:36 UTC (841 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.