Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Oct 2021 (v1), last revised 5 Mar 2023 (this version, v2)]
Title:Polyline Generative Navigable Space Segmentation for Autonomous Visual Navigation
View PDFAbstract:Detecting navigable space is a fundamental capability for mobile robots navigating in unknown or unmapped environments. In this work, we treat visual navigable space segmentation as a scene decomposition problem and propose Polyline Segmentation Variational autoencoder Network (PSV-Net), a representation learning-based framework for learning the navigable space segmentation in a self-supervised manner. Current segmentation techniques heavily rely on fully-supervised learning strategies which demand a large amount of pixel-level annotated images. In this work, we propose a framework leveraging a Variational AutoEncoder (VAE) and an AutoEncoder (AE) to learn a polyline representation that compactly outlines the desired navigable space boundary. Through extensive experiments, we validate that the proposed PSV-Net can learn the visual navigable space with no or few labels, producing an accuracy comparable to fully-supervised state-of-the-art methods that use all available labels. In addition, we show that integrating the proposed navigable space segmentation model with a visual planner can achieve efficient mapless navigation in real environments.
Submission history
From: Zheng Chen [view email][v1] Fri, 29 Oct 2021 19:50:48 UTC (2,485 KB)
[v2] Sun, 5 Mar 2023 18:08:42 UTC (3,538 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.