Computer Science > Computation and Language
[Submitted on 30 Oct 2021]
Title:Backdoor Pre-trained Models Can Transfer to All
View PDFAbstract:Pre-trained general-purpose language models have been a dominating component in enabling real-world natural language processing (NLP) applications. However, a pre-trained model with backdoor can be a severe threat to the applications. Most existing backdoor attacks in NLP are conducted in the fine-tuning phase by introducing malicious triggers in the targeted class, thus relying greatly on the prior knowledge of the fine-tuning task. In this paper, we propose a new approach to map the inputs containing triggers directly to a predefined output representation of the pre-trained NLP models, e.g., a predefined output representation for the classification token in BERT, instead of a target label. It can thus introduce backdoor to a wide range of downstream tasks without any prior knowledge. Additionally, in light of the unique properties of triggers in NLP, we propose two new metrics to measure the performance of backdoor attacks in terms of both effectiveness and stealthiness. Our experiments with various types of triggers show that our method is widely applicable to different fine-tuning tasks (classification and named entity recognition) and to different models (such as BERT, XLNet, BART), which poses a severe threat. Furthermore, by collaborating with the popular online model repository Hugging Face, the threat brought by our method has been confirmed. Finally, we analyze the factors that may affect the attack performance and share insights on the causes of the success of our backdoor attack.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.