Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Oct 2021]
Title:Top1 Solution of QQ Browser 2021 Ai Algorithm Competition Track 1 : Multimodal Video Similarity
View PDFAbstract:In this paper, we describe the solution to the QQ Browser 2021 Ai Algorithm Competition (AIAC) Track 1. We use the multi-modal transformer model for the video embedding extraction. In the pretrain phase, we train the model with three tasks, (1) Video Tag Classification (VTC), (2) Mask Language Modeling (MLM) and (3) Mask Frame Modeling (MFM). In the finetune phase, we train the model with video similarity based on rank normalized human labels. Our full pipeline, after ensembling several models, scores 0.852 on the leaderboard, which we achieved the 1st place in the competition. The source codes have been released at Github.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.