Computer Science > Machine Learning
[Submitted on 15 Nov 2021 (v1), last revised 19 Nov 2022 (this version, v3)]
Title:Meta-Auto-Decoder for Solving Parametric Partial Differential Equations
View PDFAbstract:Many important problems in science and engineering require solving the so-called parametric partial differential equations (PDEs), i.e., PDEs with different physical parameters, boundary conditions, shapes of computation domains, etc. Recently, building learning-based numerical solvers for parametric PDEs has become an emerging new field. One category of methods such as the Deep Galerkin Method (DGM) and Physics-Informed Neural Networks (PINNs) aim to approximate the solution of the PDEs. They are typically unsupervised and mesh-free, but require going through the time-consuming network training process from scratch for each set of parameters of the PDE. Another category of methods such as Fourier Neural Operator (FNO) and Deep Operator Network (DeepONet) try to approximate the solution mapping directly. Being fast with only one forward inference for each PDE parameter without retraining, they often require a large corpus of paired input-output observations drawn from numerical simulations, and most of them need a predefined mesh as well. In this paper, we propose Meta-Auto-Decoder (MAD), a mesh-free and unsupervised deep learning method that enables the pre-trained model to be quickly adapted to equation instances by implicitly encoding (possibly heterogenous) PDE parameters as latent vectors. The proposed method MAD can be interpreted by manifold learning in infinite-dimensional spaces, granting it a geometric insight. Extensive numerical experiments show that the MAD method exhibits faster convergence speed without losing accuracy than other deep learning-based methods. The project page with code is available: this https URL.
Submission history
From: Hongsheng Liu [view email][v1] Mon, 15 Nov 2021 02:51:42 UTC (3,674 KB)
[v2] Fri, 3 Jun 2022 13:16:20 UTC (12,937 KB)
[v3] Sat, 19 Nov 2022 01:19:30 UTC (13,572 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.