Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Nov 2021 (v1), last revised 23 Nov 2021 (this version, v2)]
Title:Probabilistic Spatial Distribution Prior Based Attentional Keypoints Matching Network
View PDFAbstract:Keypoints matching is a pivotal component for many image-relevant applications such as image stitching, visual simultaneous localization and mapping (SLAM), and so on. Both handcrafted-based and recently emerged deep learning-based keypoints matching methods merely rely on keypoints and local features, while losing sight of other available sensors such as inertial measurement unit (IMU) in the above applications. In this paper, we demonstrate that the motion estimation from IMU integration can be used to exploit the spatial distribution prior of keypoints between images. To this end, a probabilistic perspective of attention formulation is proposed to integrate the spatial distribution prior into the attentional graph neural network naturally. With the assistance of spatial distribution prior, the effort of the network for modeling the hidden features can be reduced. Furthermore, we present a projection loss for the proposed keypoints matching network, which gives a smooth edge between matching and un-matching keypoints. Image matching experiments on visual SLAM datasets indicate the effectiveness and efficiency of the presented method.
Submission history
From: Xiaoming Zhao [view email][v1] Wed, 17 Nov 2021 09:52:03 UTC (15,197 KB)
[v2] Tue, 23 Nov 2021 05:20:11 UTC (15,197 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.