Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 23 Nov 2021]
Title:Locality Sensitive Hash Aggregated Nonlinear Neighbourhood Matrix Factorization for Online Sparse Big Data Analysis
View PDFAbstract:Matrix factorization (MF) can extract the low-rank features and integrate the information of the data manifold distribution from high-dimensional data, which can consider the nonlinear neighbourhood information. Thus, MF has drawn wide attention for low-rank analysis of sparse big data, e.g., Collaborative Filtering (CF) Recommender Systems, Social Networks, and Quality of Service. However, the following two problems exist: 1) huge computational overhead for the construction of the Graph Similarity Matrix (GSM), and 2) huge memory overhead for the intermediate GSM. Therefore, GSM-based MF, e.g., kernel MF, graph regularized MF, etc., cannot be directly applied to the low-rank analysis of sparse big data on cloud and edge platforms. To solve this intractable problem for sparse big data analysis, we propose Locality Sensitive Hashing (LSH) aggregated MF (LSH-MF), which can solve the following problems: 1) The proposed probabilistic projection strategy of LSH-MF can avoid the construction of the GSM. Furthermore, LSH-MF can satisfy the requirement for the accurate projection of sparse big data. 2) To run LSH-MF for fine-grained parallelization and online learning on GPUs, we also propose CULSH-MF, which works on CUDA parallelization. Experimental results show that CULSH-MF can not only reduce the computational time and memory overhead but also obtain higher accuracy. Compared with deep learning models, CULSH-MF can not only save training time but also achieve the same accuracy performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.