Computer Science > Information Retrieval
[Submitted on 25 Nov 2021 (v1), last revised 30 Nov 2021 (this version, v2)]
Title:Unbiased Pairwise Learning to Rank in Recommender Systems
View PDFAbstract:Nowadays, recommender systems already impact almost every facet of peoples lives. To provide personalized high quality recommendation results, conventional systems usually train pointwise rankers to predict the absolute value of objectives and leverage a distinct shallow tower to estimate and alleviate the impact of position bias. However, with such a training paradigm, the optimization target differs a lot from the ranking metrics valuing the relative order of top ranked items rather than the prediction precision of each item. Moreover, as the existing system tends to recommend more relevant items at higher positions, it is difficult for the shallow tower based methods to precisely attribute the user feedback to the impact of position or relevance. Therefore, there exists an exciting opportunity for us to get enhanced performance if we manage to solve the aforementioned issues. Unbiased learning to rank algorithms, which are verified to model the relative relevance accurately based on noisy feedback, are appealing candidates and have already been applied in many applications with single categorical labels, such as user click signals. Nevertheless, the existing unbiased LTR methods cannot properly handle multiple feedback incorporating both categorical and continuous labels. Accordingly, we design a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion and introduces the pairwise trust bias to separate the position bias, trust bias, and user relevance explicitly. Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
Submission history
From: Hongyan Tang [view email][v1] Thu, 25 Nov 2021 06:04:59 UTC (341 KB)
[v2] Tue, 30 Nov 2021 03:17:27 UTC (341 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.