Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Nov 2021]
Title:Gated SwitchGAN for multi-domain facial image translation
View PDFAbstract:Recent studies on multi-domain facial image translation have achieved impressive results. The existing methods generally provide a discriminator with an auxiliary classifier to impose domain translation. However, these methods neglect important information regarding domain distribution matching. To solve this problem, we propose a switch generative adversarial network (SwitchGAN) with a more adaptive discriminator structure and a matched generator to perform delicate image translation among multiple domains. A feature-switching operation is proposed to achieve feature selection and fusion in our conditional modules. We demonstrate the effectiveness of our model. Furthermore, we also introduce a new capability of our generator that represents attribute intensity control and extracts content information without tailored training. Experiments on the Morph, RaFD and CelebA databases visually and quantitatively show that our extended SwitchGAN (i.e., Gated SwitchGAN) can achieve better translation results than StarGAN, AttGAN and STGAN. The attribute classification accuracy achieved using the trained ResNet-18 model and the FID score obtained using the ImageNet pretrained Inception-v3 model also quantitatively demonstrate the superior performance of our models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.