Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Nov 2021]
Title:NeuSample: Neural Sample Field for Efficient View Synthesis
View PDFAbstract:Neural radiance fields (NeRF) have shown great potentials in representing 3D scenes and synthesizing novel views, but the computational overhead of NeRF at the inference stage is still heavy. To alleviate the burden, we delve into the coarse-to-fine, hierarchical sampling procedure of NeRF and point out that the coarse stage can be replaced by a lightweight module which we name a neural sample field. The proposed sample field maps rays into sample distributions, which can be transformed into point coordinates and fed into radiance fields for volume rendering. The overall framework is named as NeuSample. We perform experiments on Realistic Synthetic 360$^{\circ}$ and Real Forward-Facing, two popular 3D scene sets, and show that NeuSample achieves better rendering quality than NeRF while enjoying a faster inference speed. NeuSample is further compressed with a proposed sample field extraction method towards a better trade-off between quality and speed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.