Computer Science > Machine Learning
[Submitted on 5 Dec 2021]
Title:A Deep-Learning Intelligent System Incorporating Data Augmentation for Short-Term Voltage Stability Assessment of Power Systems
View PDFAbstract:Facing the difficulty of expensive and trivial data collection and annotation, how to make a deep learning-based short-term voltage stability assessment (STVSA) model work well on a small training dataset is a challenging and urgent problem. Although a big enough dataset can be directly generated by contingency simulation, this data generation process is usually cumbersome and inefficient; while data augmentation provides a low-cost and efficient way to artificially inflate the representative and diversified training datasets with label preserving transformations. In this respect, this paper proposes a novel deep-learning intelligent system incorporating data augmentation for STVSA of power systems. First, due to the unavailability of reliable quantitative criteria to judge the stability status for a specific power system, semi-supervised cluster learning is leveraged to obtain labeled samples in an original small dataset. Second, to make deep learning applicable to the small dataset, conditional least squares generative adversarial networks (LSGAN)-based data augmentation is introduced to expand the original dataset via artificially creating additional valid samples. Third, to extract temporal dependencies from the post-disturbance dynamic trajectories of a system, a bi-directional gated recurrent unit with attention mechanism based assessment model is established, which bi-directionally learns the significant time dependencies and automatically allocates attention weights. The test results demonstrate the presented approach manages to achieve better accuracy and a faster response time with original small datasets. Besides classification accuracy, this work employs statistical measures to comprehensively examine the performance of the proposal.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.