Computer Science > Machine Learning
[Submitted on 8 Dec 2021]
Title:Learnable Faster Kernel-PCA for Nonlinear Fault Detection: Deep Autoencoder-Based Realization
View PDFAbstract:Kernel principal component analysis (KPCA) is a well-recognized nonlinear dimensionality reduction method that has been widely used in nonlinear fault detection tasks. As a kernel trick-based method, KPCA inherits two major problems. First, the form and the parameters of the kernel function are usually selected blindly, depending seriously on trial-and-error. As a result, there may be serious performance degradation in case of inappropriate selections. Second, at the online monitoring stage, KPCA has much computational burden and poor real-time performance, because the kernel method requires to leverage all the offline training data. In this work, to deal with the two drawbacks, a learnable faster realization of the conventional KPCA is proposed. The core idea is to parameterize all feasible kernel functions using the novel nonlinear DAE-FE (deep autoencoder based feature extraction) framework and propose DAE-PCA (deep autoencoder based principal component analysis) approach in detail. The proposed DAE-PCA method is proved to be equivalent to KPCA but has more advantage in terms of automatic searching of the most suitable nonlinear high-dimensional space according to the inputs. Furthermore, the online computational efficiency improves by approximately 100 times compared with the conventional KPCA. With the Tennessee Eastman (TE) process benchmark, the effectiveness and superiority of the proposed method is illustrated.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.