Computer Science > Networking and Internet Architecture
[Submitted on 17 Dec 2021 (v1), last revised 16 Jan 2023 (this version, v2)]
Title:Hybrid Self-Organizing Networks: Evolution, Standardization Trends, and a 6G Architecture Vision
View PDFAbstract:Self-organizing networks (SONs) need to be endowed with self-coordination capabilities to manage the complex relations between their internal components and to avoid their destructive interactions. Existing communication technologies commonly implement responsive self-coordination mechanisms that can be very slow in dynamic situations. The sixth generation (6G) networks, being in their early stages of research and standardization activities, open new opportunities to opt for a design-driven approach when developing self-coordination capabilities. This can be achieved through the use of hybrid SON designs. A hybrid architecture combines the centralized and distributed management and control. In this article, we review the history of SONs including the inherent self-coordination feature. We then delve into the concept of hybrid SONs (H-SONs), and we summarize the challenges, opportunities, and future trends for H-SON development. We provide a comprehensive collection of standardization activities and recommendations, discussing the key contributions and potential work to continue the evolution and push for a wide adoption of the H-SON paradigm. More importantly, as a key 6G architectural feature we propose that H-SONs should be loosely coupled networks. Loose coupling refers to the weak interaction of different layers and weak interaction between users in the same layer, i.e., the various feedback loops must be almost isolated from each other to improve the stability and to avoid chaotic situations. We finally conclude the paper with the key hints about the future landscape and the key drivers of 6G H-SONs.
Submission history
From: Abdelaali Chaoub Prof. [view email][v1] Fri, 17 Dec 2021 21:15:39 UTC (2,530 KB)
[v2] Mon, 16 Jan 2023 11:44:58 UTC (1,822 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.