Computer Science > Machine Learning
[Submitted on 4 Jan 2022]
Title:Transfer Learning for Retinal Vascular Disease Detection: A Pilot Study with Diabetic Retinopathy and Retinopathy of Prematurity
View PDFAbstract:Retinal vascular diseases affect the well-being of human body and sometimes provide vital signs of otherwise undetected bodily damage. Recently, deep learning techniques have been successfully applied for detection of diabetic retinopathy (DR). The main obstacle of applying deep learning techniques to detect most other retinal vascular diseases is the limited amount of data available. In this paper, we propose a transfer learning technique that aims to utilize the feature similarities for detecting retinal vascular diseases. We choose the well-studied DR detection as a source task and identify the early detection of retinopathy of prematurity (ROP) as the target task. Our experimental results demonstrate that our DR-pretrained approach dominates in all metrics the conventional ImageNet-pretrained transfer learning approach, currently adopted in medical image analysis. Moreover, our approach is more robust with respect to the stochasticity in the training process and with respect to reduced training samples. This study suggests the potential of our proposed transfer learning approach for a broad range of retinal vascular diseases or pathologies, where data is limited.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.