Computer Science > Machine Learning
[Submitted on 4 Jan 2022]
Title:Integrating Human-in-the-loop into Swarm Learning for Decentralized Fake News Detection
View PDFAbstract:Social media has become an effective platform to generate and spread fake news that can mislead people and even distort public opinion. Centralized methods for fake news detection, however, cannot effectively protect user privacy during the process of centralized data collection for training models. Moreover, it cannot fully involve user feedback in the loop of learning detection models for further enhancing fake news detection. To overcome these challenges, this paper proposed a novel decentralized method, Human-in-the-loop Based Swarm Learning (HBSL), to integrate user feedback into the loop of learning and inference for recognizing fake news without violating user privacy in a decentralized manner. It consists of distributed nodes that are able to independently learn and detect fake news on local data. Furthermore, detection models trained on these nodes can be enhanced through decentralized model merging. Experimental results demonstrate that the proposed method outperforms the state-of-the-art decentralized method in regard of detecting fake news on a benchmark dataset.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.