Computer Science > Computation and Language
[Submitted on 14 Jan 2022]
Title:Eliciting Knowledge from Pretrained Language Models for Prototypical Prompt Verbalizer
View PDFAbstract:Recent advances on prompt-tuning cast few-shot classification tasks as a masked language modeling problem. By wrapping input into a template and using a verbalizer which constructs a mapping between label space and label word space, prompt-tuning can achieve excellent results in zero-shot and few-shot scenarios. However, typical prompt-tuning needs a manually designed verbalizer which requires domain expertise and human efforts. And the insufficient label space may introduce considerable bias into the results. In this paper, we focus on eliciting knowledge from pretrained language models and propose a prototypical prompt verbalizer for prompt-tuning. Labels are represented by prototypical embeddings in the feature space rather than by discrete words. The distances between the embedding at the masked position of input and prototypical embeddings are used as classification criterion. For zero-shot settings, knowledge is elicited from pretrained language models by a manually designed template to form initial prototypical embeddings. For few-shot settings, models are tuned to learn meaningful and interpretable prototypical embeddings. Our method optimizes models by contrastive learning. Extensive experimental results on several many-class text classification datasets with low-resource settings demonstrate the effectiveness of our approach compared with other verbalizer construction methods. Our implementation is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.