Computer Science > Computation and Language
[Submitted on 15 Jan 2022 (v1), last revised 26 Jan 2023 (this version, v3)]
Title:A Dual Prompt Learning Framework for Few-Shot Dialogue State Tracking
View PDFAbstract:Dialogue state tracking (DST) module is an important component for task-oriented dialog systems to understand users' goals and needs. Collecting dialogue state labels including slots and values can be costly, especially with the wide application of dialogue systems in more and more new-rising domains. In this paper, we focus on how to utilize the language understanding and generation ability of pre-trained language models for DST. We design a dual prompt learning framework for few-shot DST. Specifically, we consider the learning of slot generation and value generation as dual tasks, and two prompts are designed based on such a dual structure to incorporate task-related knowledge of these two tasks respectively. In this way, the DST task can be formulated as a language modeling task efficiently under few-shot settings. Experimental results on two task-oriented dialogue datasets show that the proposed method not only outperforms existing state-of-the-art few-shot methods, but also can generate unseen slots. It indicates that DST-related knowledge can be probed from PLM and utilized to address low-resource DST efficiently with the help of prompt learning.
Submission history
From: Yuting Yang [view email][v1] Sat, 15 Jan 2022 07:37:33 UTC (741 KB)
[v2] Fri, 25 Feb 2022 06:01:30 UTC (741 KB)
[v3] Thu, 26 Jan 2023 03:50:21 UTC (1,520 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.