Computer Science > Networking and Internet Architecture
[Submitted on 18 Jan 2022]
Title:Enabling Deep Reinforcement Learning on Energy Constrained Devices at the Edge of the Network
View PDFAbstract:Deep Reinforcement Learning (DRL) solutions are becoming pervasive at the edge of the network as they enable autonomous decision-making in a dynamic environment. However, to be able to adapt to the ever-changing environment, the DRL solution implemented on an embedded device has to continue to occasionally take exploratory actions even after initial convergence. In other words, the device has to occasionally take random actions and update the value function, i.e., re-train the Artificial Neural Network (ANN), to ensure its performance remains optimal. Unfortunately, embedded devices often lack processing power and energy required to train the ANN. The energy aspect is particularly challenging when the edge device is powered only by a means of Energy Harvesting (EH). To overcome this problem, we propose a two-part algorithm in which the DRL process is trained at the sink. Then the weights of the fully trained underlying ANN are periodically transferred to the EH-powered embedded device taking actions. Using an EH-powered sensor, real-world measurements dataset, and optimizing for Age of Information (AoI) metric, we demonstrate that such a DRL solution can operate without any degradation in the performance, with only a few ANN updates per day.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.