Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 24 Jan 2022]
Title:PickNet: Real-Time Channel Selection for Ad Hoc Microphone Arrays
View PDFAbstract:This paper proposes PickNet, a neural network model for real-time channel selection for an ad hoc microphone array consisting of multiple recording devices like cell phones. Assuming at most one person to be vocally active at each time point, PickNet identifies the device that is spatially closest to the active person for each time frame by using a short spectral patch of just hundreds of milliseconds. The model is applied to every time frame, and the short time frame signals from the selected microphones are concatenated across the frames to produce an output signal. As the personal devices are usually held close to their owners, the output signal is expected to have higher signal-to-noise and direct-to-reverberation ratios on average than the input signals. Since PickNet utilizes only limited acoustic context at each time frame, the system using the proposed model works in real time and is robust to changes in acoustic conditions. Speech recognition-based evaluation was carried out by using real conversational recordings obtained with various smartphones. The proposed model yielded significant gains in word error rate with limited computational cost over systems using a block-online beamformer and a single distant microphone.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.