Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 18 Feb 2022]
Title:Speaker Identity Preservation in Dysarthric Speech Reconstruction by Adversarial Speaker Adaptation
View PDFAbstract:Dysarthric speech reconstruction (DSR), which aims to improve the quality of dysarthric speech, remains a challenge, not only because we need to restore the speech to be normal, but also must preserve the speaker's identity. The speaker representation extracted by the speaker encoder (SE) optimized for speaker verification has been explored to control the speaker identity. However, the SE may not be able to fully capture the characteristics of dysarthric speakers that are previously unseen. To address this research problem, we propose a novel multi-task learning strategy, i.e., adversarial speaker adaptation (ASA). The primary task of ASA fine-tunes the SE with the speech of the target dysarthric speaker to effectively capture identity-related information, and the secondary task applies adversarial training to avoid the incorporation of abnormal speaking patterns into the reconstructed speech, by regularizing the distribution of reconstructed speech to be close to that of reference speech with high quality. Experiments show that the proposed approach can achieve enhanced speaker similarity and comparable speech naturalness with a strong baseline approach. Compared with dysarthric speech, the reconstructed speech achieves 22.3% and 31.5% absolute word error rate reduction for speakers with moderate and moderate-severe dysarthria respectively. Our demo page is released here: this https URL
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.