Computer Science > Machine Learning
[Submitted on 22 Feb 2022]
Title:Wastewater Pipe Condition Rating Model Using K- Nearest Neighbors
View PDFAbstract:Risk-based assessment in pipe condition mainly focuses on prioritizing the most critical assets by evaluating the risk of pipe failure. This paper's goal is to classify a comprehensive pipe rating model which is obtained based on a series of pipe physical, external, and hydraulic characteristics that are identified for the proposed methodology. The traditional manual method of assessing sewage structural conditions takes a long time. By building an automated process using K-Nearest Neighbors (K-NN), this study presents an effective technique to automate the identification of the pipe defect rating using the pipe repair data. First, we performed the Shapiro Wilks Test for 1240 data from the Dept. of Engineering & Environmental Services, Shreveport, Louisiana Phase 3 with 12 variables to determine if factors could be incorporated in the final rating. We then developed a K-Nearest Neighbors model to classify the final rating from the statistically significant factors identified in Shapiro Wilks Test. This classification process allows recognizing the worst condition of wastewater pipes that need to be replaced immediately. This comprehensive model is built according to the industry-accepted and used guidelines to estimate the overall condition. Finally, for validation purposes, the proposed model is applied to a small portion of a US wastewater collection system in Shreveport, Louisiana. Keywords: Pipe rating, Shapiro Wilks Test, K-Nearest Neighbors (KNN), Failure, Risk analysis
Submission history
From: Shashank Reddy Vadyala [view email][v1] Tue, 22 Feb 2022 17:32:45 UTC (796 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.