Computer Science > Information Retrieval
[Submitted on 21 Feb 2022 (v1), last revised 13 Sep 2022 (this version, v2)]
Title:GIFT: Graph-guIded Feature Transfer for Cold-Start Video Click-Through Rate Prediction
View PDFAbstract:Short video has witnessed rapid growth in the past few years in e-commerce platforms like Taobao. To ensure the freshness of the content, platforms need to release a large number of new videos every day, making conventional click-through rate (CTR) prediction methods suffer from the item cold-start problem. In this paper, we propose GIFT, an efficient Graph-guIded Feature Transfer system, to fully take advantages of the rich information of warmed-up videos to compensate for the cold-start ones. Specifically, we establish a heterogeneous graph that contains physical and semantic linkages to guide the feature transfer process from warmed-up video to cold-start videos. The physical linkages represent explicit relationships, while the semantic linkages measure the proximity of multi-modal representations of two videos. We elaborately design the feature transfer function to make aware of different types of transferred features (e.g., id representations and historical statistics) from different metapaths on the graph. We conduct extensive experiments on a large real-world dataset, and the results show that our GIFT system outperforms SOTA methods significantly and brings a 6.82% lift on CTR in the homepage of Taobao App.
Submission history
From: Sihao Hu [view email][v1] Mon, 21 Feb 2022 09:31:35 UTC (14,680 KB)
[v2] Tue, 13 Sep 2022 14:17:39 UTC (3,455 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.