Computer Science > Machine Learning
[Submitted on 24 Feb 2022]
Title:Temporal Convolution Domain Adaptation Learning for Crops Growth Prediction
View PDFAbstract:Existing Deep Neural Nets on crops growth prediction mostly rely on availability of a large amount of data. In practice, it is difficult to collect enough high-quality data to utilize the full potential of these deep learning models. In this paper, we construct an innovative network architecture based on domain adaptation learning to predict crops growth curves with limited available crop data. This network architecture overcomes the challenge of data availability by incorporating generated data from the developed crops simulation model. We are the first to use the temporal convolution filters as the backbone to construct a domain adaptation network architecture which is suitable for deep learning regression models with very limited training data of the target domain. We conduct experiments to test the performance of the network and compare our proposed architecture with other state-of-the-art methods, including a recent LSTM-based domain adaptation network architecture. The results show that the proposed temporal convolution-based network architecture outperforms all benchmarks not only in accuracy but also in model size and convergence rate.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.