Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Feb 2022 (v1), last revised 29 Jan 2024 (this version, v2)]
Title:Understanding Adversarial Robustness from Feature Maps of Convolutional Layers
View PDFAbstract:The adversarial robustness of a neural network mainly relies on two factors: model capacity and anti-perturbation ability. In this paper, we study the anti-perturbation ability of the network from the feature maps of convolutional layers. Our theoretical analysis discovers that larger convolutional feature maps before average pooling can contribute to better resistance to perturbations, but the conclusion is not true for max pooling. It brings new inspiration to the design of robust neural networks and urges us to apply these findings to improve existing architectures. The proposed modifications are very simple and only require upsampling the inputs or slightly modifying the stride configurations of downsampling operators. We verify our approaches on several benchmark neural network architectures, including AlexNet, VGG, RestNet18, and PreActResNet18. Non-trivial improvements in terms of both natural accuracy and adversarial robustness can be achieved under various attack and defense mechanisms. The code is available at \url{this https URL}.
Submission history
From: Min Yang [view email][v1] Fri, 25 Feb 2022 00:14:59 UTC (2,444 KB)
[v2] Mon, 29 Jan 2024 12:54:30 UTC (2,957 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.