Computer Science > Robotics
[Submitted on 24 Sep 2024]
Title:Development of Bidirectional Series Elastic Actuator with Torsion Coil Spring and Implementation to the Legged Robot
View PDFAbstract:Many studies have been conducted on Series Elastic Actuators (SEA) for robot joints because they are effective in terms of flexibility, safety, and energy efficiency. The ability of SEA to robustly handle unexpected disturbances has raised expectations for practical applications in environments where robots interact with humans. On the other hand, the development and commercialization of small robots for indoor entertainment applications is also actively underway, and it is thought that by using SEA in these robots, dynamic movements such as jumping and running can be realized. In this work, we developed a small and lightweight SEA using coil springs as elastic elements. By devising a method for fixing the coil spring, it is possible to absorb shock and perform highly accurate force measurement in both rotational directions with a simple structure. In addition, to verify the effectiveness of the developed SEA, we created a small single-legged robot with SEA implemented in the three joints of the hip, knee, and ankle, and we conducted a drop test. By adjusting the initial posture and control gain of each joint, we confirmed that flexible landing and continuous hopping are possible with simple PD position control. The measurement results showed that SEA is effective in terms of shock absorption and energy reuse. This work was performed for research purposes only.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.